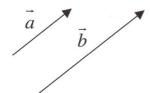
Geometrische Bedeutung der linearen Abhängigkeit

1. Lineare Abhängigkeit von zwei Vektoren:

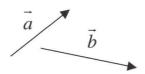
Die zwei Vektoren a und b sollen linear abhängig sein, d.h dann gibt es eine Darstellung der Form $\lambda_1 \cdot \vec{a} + \lambda_2 \cdot \vec{b} = \vec{0}$ mit Zahlen $\lambda_1, \lambda_2 \in R$, die nicht beide gleich Null sind.

Gilt z.B $\lambda_1 \neq 0$, so kann man diese Gleichung nach a auflösen: $\vec{a} = -\frac{\lambda_2}{\lambda_4} \cdot \vec{b}$.

Der Vektor a ist also ein Vielfaches des Vektors b, d.h. die Vektoren sind zueinander parallel. Man bezeichnet die Vektoren in diesem Fall auch als kollinear.



kollineare Vektoren



nicht kollineare Vektoren

2. Lineare Abhängigkeit von drei Vektoren:

Die drei Vektoren \vec{a} , \vec{b} und \vec{c} sollen linear abhängig sein, d.h dann gibt es eine Darstellung der Form $\lambda_1 \cdot \vec{a} + \lambda_2 \cdot \vec{b} + \lambda_3 \cdot \vec{c} = \vec{0}$ mit Zahlen $\lambda_1, \lambda_2, \lambda_3 \in R$, die nicht alle gleich Null sind.

Gilt z.B $\lambda_1 \neq 0$, so kann man diese Gleichung nach a auflösen: $\vec{a} = -\frac{\lambda_2}{\lambda_1} \cdot \vec{b} - -\frac{\lambda_3}{\lambda_1} \cdot \vec{c}$.

Der Vektor a lässt also als Linearkombination der Vektoren b und c darstellen. Sind die Vektoren a, b und c linear abhängige, vom Nullvektor verschiedene Vektoren, dann liegen sie in einer Ebene.

Man bezeichnet in diesem Fall die Vektoren auch als komplanar.

